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2 THOMAS WARD

1. INTRODUCTION

One of the most basic dynamical ideas is that of a local portrait
of hyperbolicity (or non-hyperbolicity). This is a picture of how the
map acts in a neighbourhood of a point (or, equivalently, on a covering
space).

Example 1.1. [A CONTRACTING HOMOTHETY] Consider the map on
R? given by f : (i) — (i\\i) with A € (0,1). The local portrait
Figure 1 around the fixed point 0 shows the dynamics of iterating f:

all orbits are sucked exponentially towards 0.

FIGURE 1. A contracting homothety

A more realistic example is given by a hyperbolic toral automor-
phism.

Example 1.2. Consider the map f : (;) — (? 1) on R2. Figure 2

shows the eigenvectors in bold, and orbits of points being attracted to
the unstable direction.

Our purpose in these notes is to explore several questions.

(1) In which dynamical settings can these kind of portraits be use-
fully made?

(2) More generally, in which dynamical settings does the action
seen through a valuation tell you anything?

(3) Finally, can valuations in low-dimensional systems help us to
understand actions of higher-rank groups?
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FIGURE 2. A hyperbolic automorphism

2. S-INTEGER DYNAMICAL SYSTEMS

2.1. Definition and examples. The S-integer dynamical systems are
a very simple collection of dynamical systems which are the pieces from
which group automorphisms may be built up. Most of the material here
is taken from [ 1]. An excellent modern treatment of Tate’s thesis and
related material is the text of Ramakrishnan and Valenza, [57].

Let k£ be an A-field in the sense of Weil (that is, k is an algebraic
extension of the rational field Q or of F,(¢) for some rational prime
q), and let P(k) denote the set of places of k. A place w € P(k) is
finite if w contains only non-archimedean valuations and is infinite
otherwise (with one exception: for the case F,(t) the place given by
t~1 is regarded as being an infinite place despite giving rise to a non—
archimedean valuation).

Example 2.1. For the case kg = Q or ky = Fy(t), the places are
defined as follows.

THE RATIONALS Q. The places of Q are in one-to—one correspondence
with the set of rational primes {2,3,5,7,...} together with one addi-
tional place oo at infinity. The corresponding valuations are |r|,, = |r|
(the usual archimedean valuation), and for each p, |r|, = p~ %),
where ord,(r) is the (signed) multiplicity with which the rational prime
p divides the the rational r.

THE FunctioN FIELD F,(t). For F,(¢) there are no archimedean
places. For each monic irreducible polynomial v(t) € F[t] there is a
distinct place v, with corresponding valuation given by

[y = et est),

where ord,(f) is the signed multiplicity with which v divides the ra-
tional function f. There is one additional place given by v(t) = t71,
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and this place will be called an infinite place even though the corre-
sponding valuation is non—archimedean. This ‘infinite’ place is defined
by |floe = g~ o),

Let k be a finite extension of ky. A place w € P = P(k) is said to lie
above a place v of kg = Q or F,(t), denoted w|v, if | - |, rectricted to
the base field ky C k coincides with | - |,. Denote by k, the (metric)
completion of k& under the metric d,,(z,y) = |z — y| on k. The local
degree is defined by d,, = [ky : (ko)»]. Choose a normalized valuation
| - | corresponding to the place w to have

] = |2]5/¢

for each = € ko\{0}, where d = [k : ko] is the global degree. With the

above normalizations we have the Artin product formula [30, p. 75]
(2.1) I =l =1
weP(k)

for all z € k\{0}.
For each finite place w of k, the field k, is a local field, and the
maximal compact subring of k,, is

ro ={z €k: |x], <1}

Elements of r,, are called w—adic integers in k,,. The group of units in
the ring r,, is

re={x €k: ||, =1}
Let Py, = P (k) denote the set of infinite places of k.

Definition 2.2. Let k& be an A—field. Given an element £ € k*, and any
set S C P(k)\Px(k) with the property that ||, < 1 for all w ¢ SUP,
define a dynamical system (X,a) = (X®#9) aF59) as follows. The
compact abelian group X is the dual group to the discrete countable
group of S—integers Rg in k, defined by

Rs={z€k:|z|, <1forallw ¢ SUPL(k)}.

The continuous group endomorphism a : X — X is dual to the
monomorphism @ : Rg — Rg defined by a(z) = .

Dynamical systems of the form (X*% o*59) are called S-integer
dynamical systems. Following conventions from number theory, we
shall divide these into two classes: arithmetic systems when k is a
number field, and geometric when k has positive characteristic. To
clarify this definition — and to show how these systems connect with
previously studied ones — several examples follow.
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Example 2.3. (1) Let £k =Q, S =0, and £ = 2. Then
Rs ={z € Q: |z|, <1 for all primes p} = Z,

so X =T and « is the circle doubling map.
(2) Let k =Q, S = {2}, and £ = 2. Then

Rs = {z € Q: |z], <1 for all primes p # 2} = Z[3],
so X is the solenoid Z[3], and o is the automorphism of X dual to the
automorphism x +— 2z of Rg. This is the natural invertible extension
of the circle doubling map [13, Example (c)] or [31, Sect. 2].

As pointed out in [6, Chap. 1 Example D], this dynamical system
is topologically conjugate to the system (Y, 3) defined as follows. Let
D ={z¢€C:|z]| <1} and S' = {z € C: |z] = 1}. Define a map
f:S'"x D — S'x Dby

f(z,w) = (2% %z + iw).

Let Y = (), cn /"(S' x D) and let § be the map induced by f on Y.
Then there is a homeomorphism Y — X that intertwines the maps (3
and «. For more details on this example and related “DE” (derived
from expanding) examples, see, [69, Section 1.9]; for a thorough and
detailed treatment of this dyadic example see [31, Sect. 17.1].

(3) Let k = Q, S ={2,3}, { = . Then Rg = Z[¢], and « is the map
dual to multiplication by % on Rg. This map has dense periodic points
by [17, Sect. 3] and has topological entropy log 3 by [17, Sect. 2].

(4) Let k =Q, S ={2,3,5,7,11,...}, and £ = % Then Rg = Q and
« is the automorphism of the full solenoid @ dual to multiplication by

% on Q. This map has only one periodic point for any period by [17,
Sect. 3] and has topological entropy log 3 by [17, Sect. 2].

(5) Let & be an algebraic integer, k = Q(§) and S = (). Then Rg is
the ring of algebraic integers in k. Taking & =v2 — 1 +iv/2v2 — 2
gives a non—expansive quasihyperbolic automorphism of the 4-torus as
pointed out in [11, Sect. 3|

(6) Let & = Fy(t), S = 0, and £ = t. Then Rg = F,[t], and so
X = Rs = [[:2,{0,1,...,¢ — 1}. The map « is therefore the full
one—sided shift on g symbols.

(7) Let k = F,(t), S = {t}, and £ = t. Recall that the valuation
corresponding to t is |f|, = ¢~ %) so |t|, = ¢'. The ring of S
integers is

Rs={f €F,(t): |flw <1forall w#tt '} =TF,[t*].
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The dual of Rg is then [[* _{0,1,...,¢ — 1}, and in this case « is the
full two—sided shift on ¢ symbols.

(8) Let k = Fy(t), S = {t}, and £ = 1 +¢. Then X is the two-sided
shift space on ¢ symbols, and « is the cellular automaton defined by

(a())y = Tg + 41 mod q.

(9) Let k =F,(t), S = {t,1+t}, and £ = 1+¢. Then « is the invertible
extension of the cellular automaton in (8).

(10) Let v be an ergodic automorphism of a finite-dimensional torus.

For cach subset S of the rational primes let T's = X ®y Z[%]. Then

« defines an endomorphism ag : f; — I's. Each ag has the same
entropy as a by [17] (and is therefore measurably isomorphic to ),
but they are all topologically distinct, so {ag} forms an uncountable
family of topological dynamical systems all measurably isomorphic to
each other.

(11) Not all toral endomorphisms are S—integer dynamical systems. Let
ay @ T" — T™ be the toral endomorphism corresponding to the integer
matrix A € M, (Z). Assume that the characteristic polynomial x4 of A
is irreducible, let A have x4(A\) = 0 and let a = (ay, ..., a,)" be a vector
in Q(\)™ with Aa = Aa with the property that a = a1 Ry + - - - + a, Ry
is an ideal in the ring Ry = Z[\]. Two ideals determined in this way
from the same matrix belong to the same ideal class by [71, Th. 2].

Lemma 2.4. The toral endomorphism « is topologically conjugate to
the S—integer dynamical system given by k = Q(\), € =\, S = 0 if
and only if a defines a trivial element in the ideal class group of Ry.

Proof. Let B be the companion matrix to the polynomial x4. Then
there is an isomorphism from (X(k’s), a(k’s’s)) to (T™, ag). If a defines
a trivial element in the ideal class group of Ry, then by [71], there is a
matrix S € GL,(Z) such that A = SBS™!, so there is an isomorphism
from (T", ap) to (T™, ).

Conversely, let 6 : (T", ay) — (X(kvs), a(kvgvs)) be a topological con-
jugacy. Let H, denote the first Cech homology functor with coeffi-
cients in T; H; sends any diagram of solenoids and endomorphisms
to an isomorphic diagram by [30, Lemma 6.3]. Then H,;(f) defines
an isomorphism from (T, a4) to (X(k’s), a(k’g’s)); since X %) ig an n—
dimensional torus, %% corresponds to some matrix C' € M,,(Z), and
this isomorphism is given by a matrix S € GL,(Z) with A = SCS™!.
It follows by [71] that a defines a trivial element in the ideal class group
of R)\. O
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2.2. Background on adeles. In this section we assemble some basic
facts about the ring Rg. For the case S = () most of this is straight-
forward. At the opposite extreme, when S contains all finite places (so
Rg = k), the adelic constructions of [30, Chap. IV] show how to cover
the group X*5) In the intermediate case, straightforward modifica-
tions of Weil’s arguments are needed. The construction is also given
in Tate’s thesis, and we indicate below how to read off the results we
shall need from this.
Fix an A-field k£ and a set S of finite places of k.

Definition 2.5. The S-adele ring of £ is the ring

ka(S) = {x =(z,) € H k, :|z,|, <1 for all but finitely many V} ,

vESUPs

with the topology induced by the following property. For each finite
set S' C S, the locally compact subring k5" C kx(S) defined by

ke = J[ kwx I]

veS'UP veS\S’

(with the product topology) is an open subring of ky(S), and a fun-
damental system of open neighbourhoods of 0 in the additive group of
ka(S) is given by a fundamental system of neighbourhoods of 0 in any
one of the subrings k3.

Notice that ks (.S) is locally compact since each r, is compact.

Define a map A : Rg — kx(S) by A(x) = (z,z,x,...). This map is
a well-defined ring homomorphism: notice that for « € Rg, |a], <1
for all but finitely many v by [30, Th. 111.1.3].

In [70], Tate introduces the notion of an abstract restricted direct
product, under the hypothesis that P (= SUP,) is an arbitrary count-
able set of indices (places). Let Gp (= k,) be a locally compact abelian
group for P € P, and for all but finitely many P, let Hp (= r,) be an
open compact subgroup of Gp. The restricted direct product is defined
as

G(P) = {g = (gp) € H Gp : gp € Hp for all but finitely many 73} ,
PeP

a locally compact abelian topological group. We topologise G(P) by
choosing a fundamental system of neighbourhoods of 1 in G(P) of the
form N = [[,.p Np, where each Np is a neighbourhood of 1 in G and
Np = Hp for all but finitely many P, which accords with the topology
in Definition 2.5.
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The key results proved in [70, Lem. 3.2.2, Th. 3.2.1] are the follow-

ing.

(1) A(Rg) is discrete in ka(S) and ks (S)/A(Rg) is compact,

(2) R = Rg, ka(S) = ka(S) and so ky(S)/A(Rs) = Rs
where S is an arbitrary set of finite places of an A-field k. We collect
these remarks in the following Theorem, which is an extension of one
of the “Main Theorems” in [30, Chap. IV, Sect. 2] to arbitrary sets of
places.

Theorem 2.6. The map A : Rg — ka(S) embeds Rs as a discrete
cocompact subring in the S—adele ring of k. There is an isomorphism
between the S—adele ring ky(S) and itself, which induces an isomor-

phism between Rg and ka(S)/A(Rs).

Remark 2.7. The S-adele ring ky(S) covering the dynamical system
(X9 k99 gives a complete local portrait of the hyperbolicity. A
neighbourhood of the identity in X %) is isometric to a neighbourhood
of the identity in kx(S). The map a*5¢ under this isometry acts
on each quasi—factor k, by multiplication, dilating the metric on that
quasi—factor by [¢],. If S is infinite, then the local action is an isometry
on all but finitely many quasi—factors, making such systems very far
from hyperbolic ones.

2.3. Adelic covering space. We first recall how covering spaces arise
for familiar maps. If f : T — T is the doubling map z — 2x mod 1
on the additive circle, then the cover 7 : R — T lifts the map to

f R — R. Figure 3 shows the lifted map: notice that the projection
7 is a local isometry. The import of Section 2.2 is that the same thing

R a R
T T
T a ~ T

FiGure 3. Lifting the circle doubling map

happens for any S-integer dynamical system.

Example 2.8. Let a be the S—integer dynamical system corresponding
to k = Fp(t), S = {t} and £ = ¢ (so the corresponding dynamical
system is the full p-shift). The covering space is the product k. X
k, where v is the valuation corresponding to ¢t and oo the valuation
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corresponding to ¢t~1. The local hyperbolicity portrait in the covering
space is shown in Figure 4.

X |t‘t71 = p
A

. X ‘t’t = p_l

FIGURE 4. Multiplication by ¢ is hyperbolic for S = {t}

The system is hyperbolic, which shows up in having extremely reg-
ular properties (for example, the dynamical zeta function is rational).

Example 2.9. A non-hyperbolic additive cellular automaton is given
by choosing k = F,(t), S = {t} and £ = 1+ ¢. This is the additive
cellular automata with local rule given by

f(zo, 1) = 20 + 21.

If p = 2 this is ‘rule 102’ in the standard description of cellular au-
tomata with radius 1. The covering space is the same product. The
local hyperbolicity portrait is shown in Figure 5, which indicates why
this system is non—hyperbolic.

X|1 +t|t—1 :p

X|1+t|t:1

FIGURE 5. Local effect of multiplication by 1+ ¢

The non-hyperbolicity makes the dynamics extremely complicated:
the direction in which the map acts likes an isometry behaves like a
sort of rotation, destroying some (but not all) periodic points.

The final example is a connected group automorphism.

Example 2.10. Let £ = Q, S = {2,3} and £ = 2. This system is
an isometric extension of the invertible extension of the circle doubling
map. The covering space is R x Qy x Q3.
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X |20
‘ % |2[2

X’2|3 =1

—_—

FIGURE 6. Local effect of multiplying by 2 on Z[F]

2.4. Topological entropy. For any automorphism a : X — X of
a compact metrizable group X, the topological entropy h(a) may be
defined in several different ways. The most convenient formulation is
that of Bowen [5], where the topological entropy is expressed as a local
rate of volume growth.

Definition 2.11. The topological entropy of the compact group auto-
morphism « : X — X is defined to be

n—1

1

R Bowen () = lim i ——1 F(B(a”

Boven(@) = lim lim sup —--log j <ﬂa (Be(a 56))>,
k=0

where x is any point, ;o is Haar measure, and B, denotes the metric

open ball around z.

Bowen [, Prop. 7] is that
h(c) = hpowen ().

This gives a very straightforward way to compute the entropy of auto-
morphisms of solenoids (compact, connected, finite-dimensional groups)
— this entropy was computed originally by Yuzvinskii [83], and then a
much simpler proof using Bowen’s formulation and the adelic covering
space was given in [17] and [73] for the solenoid case. The geometric
case, which includes certain cellular automata is similar (see [79]).

Theorem 2.12. The topological entropy of an S—integer system is
given by

(2.2) h(@®59) = 3" log" [¢]u

weSUP (k)

Proof. The proof is sketched for a simple case. Assume that the field k
has positive characteristic (so all the places are non-Archimedean) and
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a
ks ~ks
P p
e
kyJA(R) = XS - X5 =, /A(Rs)

FIGURE 7. Adelic covering space

assume that the set S is finite (so the topology on the S-adele ring is
simple the product topology).

Using Section 2.2 the group Rg embeds as a discrete subgroup of
]_LJGSU]P)oo k, with compact quotient, and there is a map p : ks —
ks/A(Rg); Theorem 2.6 means that there is a commutative diagram
expressing the adelic covering space kg, shown in Figure 7.

in which the map p is a local isometry and & denotes multiplication
by £ in each coordinate.

It follows by [5, Th. 9, 20] that

n—1
1 )
(2.3) h(a) = h(&) = lim lim sup —— log 41 ( &J(B€)>
eN0  n—oo n =0
where B, is the metric open ball of radius ¢ around the identity,
is Haar measure on the locally compact group HueSqu k,, and &
is the lifted map (z,),esup., — (§7,)vesup,, On the covering space

HVESUIPOO kV‘
Since S is finite, we may use the max metric on [] k,. It

veSUPs, V"
follows that
Be=A{(z,): |z], <eVveSUPL}.
Now the covering map from [
of the hyperbolicity.

For example, if S UPy = {vy, 1,13} say, and [£],, > 1, [£],, > 1,
€], < 1 then the local dynamics in a neighbourhood of the identity
in X is illustrated in Figure 8. The box B, is transformed under a*
(multiplication by £7') into a squashed box with sides of length 2¢[¢[}!,
2¢[€];,)}, 2¢|¢],.} in the directions corresponding to vy, 15, 15 respectively.
In the covering space the effect of multiplying the box B, by 71 gives

a7 (B) ={(z,) : |¢x|, <eVveSUPL}
={(z,) : |z], < €/|€P Vv e SUPL}.

vesup,, kv onto X % gives a local portrait
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x[€],
A X

// "

FIGURE 8. Multiplying B, by £~ for SUP. = {11, 10,13}

€] v,

§|§|V2 a~t

. ky,

Thus the set

is a ‘box” with one side for each term v € S UP,,, and the ‘length’ of

each side is
: 2 n—1\17 _ € if ’§|I/ S 17
(24) mln{ev E/|£|V7€/|€|w R €/|€|V } - { 6/‘5’3—1 lf ’6‘11 > 1

It follows that
-1

p(D(n,e)) = F=L T lel |
v:lél,>1
which when substituted into (2.3) gives the formula (2.12). O

2.5. Dynamical properties. Recall the following standard criterion
for ergodicity of compact group automorphisms.

Theorem 2.13. If X is a compact metrizable abelian group and « :
X — X is a surjective continuous endomorphism then Haar measure
i1s ergodic for T if and only if the trivial character v = 1 is the only
v E X satisfying v o T™ =~ for some n > 0.

Proof. See [29, Th. 1]. O

Corollary 2.14. Let (X, a) = (X®9 o&59) be an S—integer dynam-
ical system. Then « is ergodic if and only if & is not a root of unity.

It follows that in the geometric case a is ergodic if and only if § ¢ Fy.

Proof. The map « is non—ergodic if and only if there is a r € Rg\{0}
with £™r = r for some m # 0. This is possible in a field if and only if
¢ is a unit root. 0
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Recall that a continuous map « : (X,d) — (X,d) is forwardly ex-
pansive if there is a constant 0 > 0 such that for each pair x #y € X
there is some n € N with d(a"z,a"y) > §. A homeomorphism 3 :
(X,d) — (X,d) is expansive if there is a constant § > 0 such that for
each pair z # y € X there is some n € Z with d(f"x, f"y) > 6. Home-
omorphisms can only be forwardly expansive on finite metric spaces —
this observation seems to have been first made in the Ph.D. thesis of
Schwartzman; a proof is in [13].

Theorem 2.15. Let K be a non—discrete field complete with respect to
a valuation | - |, and let K denote the algebraic closure of K with the
uniquely extended absolute value from K. Let E be a finite dimensional
vector space over K, and let u be an automorphism of E. Then u is
expansive if and only if |\| # 1 for each eigenvalue \ of u in K.

Proof. See Eisenberg’s paper [23, Th. 3]. O

There is an infinite-dimensional analogue of Eisenberg’s result — see

[24].

Corollary 2.16. Let (X, a) = (X®9) o859 be an S—integer dynam-
ical system. Then « is expansive if and only if SUP, C {v < oo :

€l # 1}

Proof. Recall that there is a local isometry between ka(S) and X, so
it is enough to check expansiveness of the lifted map on ks (S). Here
Eisenberg’s criterion in Theorem 2.15 applies to each of the (finitely
many) indicated quasifactors. U

Remark 2.17. Corollary 2.16 is a generalisation of [65, Prop. 7.2]
where Schmidt considers & to be a number field and S = {v < oo :

€l # 1}

2.6. Periodic points. One of the remarkable features of S-integer
systems is that there is an exact formula for the number of periodic
points. To see where this comes from, go back to the circle doubling
map, a : T — T. Finding the points of period n under this map
amounts to solving the equation (2" —1)x = 0 mod 1 on T. One way to
count solutions to this equation is to use the covering space 7 : R — T
again: fix a fundamental domain F' for 7 (this could be [0,1) say —
but it does not really matter as long as it is a measurable set) and
consider the image of F' under x (2" — 1) in the covering space: write
G = (2"—1)F. I claim that the set G contains exactly (2" —1) integers,
and the pre-image of each of these under multiplication by (2" — 1)
gives a unique point of period n. It follows that the number of points
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of period n is equal to the amount by which the map = — (2" — 1)z
scales Lebesgue measure on R.

Let I' be a discrete cocompact subgroup of a locally compact abelian
group X. A fundamental domain F of X modulo I" is a full (measur-
able) set of coset representatives of I in X. Denote by p the Haar
measure on X normalised to give u(F) = 1. Let A: X — X be a con-
tinuous surjective mapping with A(I') € I, and let A : X/T' — X/T
be the induced map on the quotient space.

Lemma 2.18. If ker A is discrete, then

modx (A) = | ker A|.

Proof. Since I' is discrete in X, a fundamental domain F' may be chosen
so that there exists a neighbourhood U(0x) of the identity Ox € X with
U(0x) C F. The finiteness of | ker A| follows from the fact that X/T
is compact. So for a sufficiently small neighbourhood V(0x,r) of the
identity Ox/[‘ € X/F,

ATV (0x/r) = U Vi,

where each V; is a neighbourhood of a point in the set A~'(0x/r) and
their union is disjoint. Since A is measure—preserving, p (A_l\/(() X/p)) =
1t (V(0x/r)) . Once again using the discreteness of I' in X we have that
X is locally isomorphic to X/I". This means that, assuming the neigh-
bourhoods U(0x) and V(0x/r) are small enough, 7|y o) is a homeo-
morphism between U(0x) and V' (0x,r). Thus we have

u(flU(Ox)> = u(AV(0x/r))

= |ker Al (V(0x/r))
= |ker Al (U(0x))

which proves the Lemma. Furthermore, since U(Ox) C F, u(AF) =
| ker Al. O

Lemma 2.19. Let (X, a) = (X9 a®F59) be an S-integer dynamical
system. Then the number of points of period n > 1 is finite if « is
ergodic, and

|Pery()) = [] 1€" 1L

veSUPs
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Proof. A fundamental domain of k4 (S) modulo & is a set

o 0,1) x [],cqm if k is a number field with d = [k : Q,
Finite X [[,cqup. v otherwise.

The set F' is measurable. For each v € S UP, let u, denote a Haar
measure on k, normalised to have yu,(r,) = 1 for all but finitely many
v. Then the product measure p = [[,cq p. #v is well defined and is a
Haar measure on ku(S). Set A =a" — I, X = kx(S) and I' = A(Rg),
then ergodicity implies that ker A is discrete in Rg and by Lemma 2.18
we have

| Pery ()] = |ker(a" = D)| = p(@" = )F) =[] 1€~ 1]..

vESUPs
O
2.7. Growth rates. Any expansive map « must have
1
(2.5) lim sup — log Per,, () < h(«)
n—oo N

but many natural systems have a much stronger property.

Theorem 2.20. If o : X — X 1is an expansive automorphism of a
compact connected group, then
1
lim —log Per, (o) = h(a).
n—oo N
In fact the same is true of ergodic automorphisms under a finiteness
condition, but this is much more subtle (see below).

It is clear from Lemma 2.19 and Theorem 2.12 that for S—integer
dynamical systems we always have

1 1
lim inf — log Per,, () < limsup — log Per, () < h(a) < o0.
n—oo n n—oo N
A useful measure of the regularity of periodic points is the dynamical
zeta function of «,

(2.6) Ga(2) = exp D Pery(0)

a (formal) power series defined whenever Per,,(«) is finite for all n > 1.
By Hadamard, if (2.5) holds then (2.6) actually defines a holomorphic
function in the disk of radius e™*(® about the origin.

Several Diophantine issues come up in trying to extend Theorem
2.20. In order to see what is involved in finding the growth rate of
periodic points for S-integer systems, consider the following examples.
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Example 2.21. Let £ =v/2—1+iv/2v2 -2, k=Q(¢), S = 0. Then
R =7 + €7 + €27 + €37 =2 7*, so X*®9) is the 4-torus T*, and the
action of a®$9) ig isomorphic to the action of the matrix

0 1 0 0
0 0 1 0
A=109 o 0 1
1 -4 2 —4

with eigenvalues A; =+v2 — 1 4+ iv/2v2 -2 ~ 414 + 910i, Xy =

V2—1—iV2V2 -2~ 414 — 910i, \y ~ —.217 and \y ~ —4.612. The
formula for the periodic points gives

4
Per, (A) = det(A" — 1) = [ 1A} — 11.
j=1

The last two terms are fine: it is clear that

lim %log (INy — 1] x [A} = 1]) = log |\e| = h(e).
The problem is with the first two terms: |\{| = |As| = 1, but neither are
unit roots. This means that, for example |\ — 1| gets arbitrarily small
for certain values of n (the argument of A; is not a rational multiple
of m, so multiplication by A; behaves like an irrational circle rotation
with dense orbits). This problem is discussed in [15], where it is shown
to be equivalent to a problem solved by Gel'fond in [28]. Since it is
better-known, we will use Baker’s stronger result.

Lemma 2.22. [BAKER’S THEOREM] If A is an algebraic number that
is not a root of unity, then there exist constants A and B for which
A
2.7 AT =1 > —.
(27) 1>

It follows at once that the other two terms do not contribute anything
to the logarithmic growth rate:

n—oo

We conclude that

1
lim —log (|]A} — 1] x [Aj —1]) = 0.
n

1
lim — log Per,(a) = h(a)

n—oo N,
for this non-expansive toral automorphism.
Example 2.23. If £t =Q, S = {2,3} and £ = 2, then
Per,, = (2" — 1) x [2" — 1|3,
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so the growth rate of periodic points presents a similar problem. The
first term is fine: (1/n)log|2" — 1| — log 2, but the second term is less
clear. There certainly is a sequence (n;) for which |2" — 1|3 — 0, the
question is how fast must such a sequence grow?

Lemma 2.24. Let k be a an A-field of characteristic zero, fix & not a
unit, and let T be any finite subset of the finite places of k. Then there
are constants A, B > 0 for which

A
1= Il =1 = 5.

veT

This is not a deep result at all, and implies for example that
1
lim —log|2" — 1|3 =0,
n—oo N,
which shows that for this system also
1
lim — log Per, (a) = h(a).
n—oo N,

Similar reasoning gives the following theorem.

Theorem 2.25. Let (X, a) = (X®9 ok59) be an ergodic arithmetic
S—integer dynamical system with S finite. Then the growth rate of the
number of periodic points exists and is given by

(2.8) lim 1 log Per,,(a) = h(a).

n—oo N

On the other hand, for most S-integer systems the dynamical zeta
function is not rational (or even algebraic).

Example 2.26. The geometric case is very different: it is clear that
property (2.8) does not hold for non-hyperbolic linear cellular automata
for example. Example 2.9 with k = Fy(t), S = {t} and £ = 1+t already
shows some of the difficulties. The entropy is log2, and Lemma 2.19
says that

[En(@)] = |+ 1)" =1 [t +1)" =1,

e (M) et (T
) S S

We claim that the set of limit points of {1 log |1U’n(oz)|}zoz1 is

{(1-2) @) emip oo nay

= pTL

t
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This is seen as follows: write n = ¢p°* %™ where p [q then

[Fa(a)] = [(t+1)" = 1o|(t+ 1) — 1
— p"p‘pordp(n) since p Jq
= pn(l_%)_

ordy (n;

So for a sequence n; — oo with n;/p ) = ¢ for a fixed q,p [q,

1 1
lim  —log|F,, ()| = <1 — —) log p.
q

ordp(n;)—00 T

Also, p*(a) = h(«) is obtained by letting n — oo through the numbers
which are coprime to p.

Similar reasoning gives the following general result.

Theorem 2.27. Let (X, ) = (X*5) a®59) be an ergodic geometric
S—integer dynamical system with S finite. Then

1
lim sup — log Per,, (o) = h(a),
n—oo 1
and (usually) the set {%log Pern(a)} has infinitely many other limit
poInts.

Given that elements of .S destroy periodic points, an interesting ques-
tion is to ask if S can be infinite while still having many periodic points.
It turns out that this is so in a very strong sense — see Section 2.8. Be-
fore that, I will describe an example due to Chothi [12]. Let k = Q and
suppose £ is a non-zero integer. Recall that £ is said to be a primitive
root modulo a prime p if and only if the residue classes modulo p of
£,62,...,671 =1 are all distinct. The number of primitive roots mod-
ulo pis ¢(p—1), where ¢ is the Euler function. For example, 2 is not a
primitive root modulo 7 since 22 = 1(mod 7). In 1927 Artin made the
following conjecture: if a is neither a square nor —1, then there exist
infinitely many primes such that a is a primitive root modulo p. So, if
we choose £ € Z to be neither a square nor —1 and define S to be the
set of places |.|, for which £ is a primitive root modulo p, then Artin’s
conjecture implies that .S is infinite. Let o be the endomorphism of Rg
dual to multiplication by £ on Rg.

Theorem 2.28. If Artin’s conjecture holds for & then p™(a) = h(a).

Proof. Since €™ — 1|, = 1 if and only if p — 1 Jfn for each p € S, we
have

1 1 1
Zlog |Fy(a)] = = log € — 1|a + — log € — 1],
“log|Fy(a)] = ~log|¢" — 1+~ ) logl¢" — 1,

peS:p—1|n
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So by letting n — oo through all the prime numbers, we get

1
lim sup — log |, (a)| = log |¢] = h(«).
n

n—oo

O

Theorem 2.29. [HEATH-BROWN| There are infinitely many primes p
with either 2 or 3 or b as a primitive root.

Proof. Heath—Brown [30] proves that, with the exception of at most
two primes the following is true: for each prime ¢ there are infinitely
many primes p with ¢ a primitive root modulo p. 0

Corollary 2.30. There exist non—expansive systems (]%5,04) with S
infinite such that

1
lim sup — log Per,,(a)) = h(a) > 0.
n

n—oo

These dynamical systems have the remarkable property that on the
one hand they mimic hyperbolic behaviour (limsup,, ., + log Per, (o) =
h(«)), while on the other they have infinitely many directions in which
they behave as isometries.

Theorem 2.29 will appear again in connection with geometric systems
(cf. Theorem 2.35).

2.8. Typical group automorphisms. It is not clear whether it makes
sense to speak of a ‘typical’ or ‘generic’ compact group automorphism.
For one thing, it is not known what values the most obvious global
invariant, the topological entropy, takes on. In order to explain this
first difficulty, recall that the Mahler measure of a polynomial f € Z[z]
is defined to be

m(f) = / log |f(e7)|ds.

An application of Jensen’s formula shows that if € is an algebraic num-
ber with minimal polynomial f, and S = (), then the entropy of the
associated S-integer system is m(f). This appearance of Mahler mea-
sures as entropies also arises for higher-rank actions, which we will see
again later.

Problem 2.31. [LEHMER’S PROBLEM] Is 0 a cluster point of

{m(f) | | € Z[z]}?
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This problem arose in Lehmer’s paper [10] of 1933 and seems to be
very deep. For an extended discussion of what is know about it, see [7]
and [20]. Mahler measures (for polynomials in several variable) have
arisen in several areas of mathematics, including ergodic theory [19],
number theory [50], probability [9], syntomic cohomology [16] and knot
theory [07], [68].

The connection between Lehmer’s problem and the problem of de-
scribing all compact group automorphisms is provided by a result due
to Lind [15] (the same result holds in higher-rank also: see [19]).

Theorem 2.32. The set of possible entropies of compact group auto-
morphisms is all of [0,00] if the answer to Lehmer’s problem is ‘yes’,
and is the countable set {m(f) | f € Z[x]} if the answer is ‘no’.

Even after choosing a fixed entropy, it is not clear how to describe
all the group automorphisms with that entropy. So we focus on a
much simpler setting: for fixed k£ and &, can anything be said about
the dynamics of a*%¢) for a ‘typical’ set S? What (little) is known is
described in the papers [75], [77] and [7%]. Here we simply examine two
examples that illustrate some of the difficulties. For the first example,
we make the unwarranted assumption that there are infinitely many
Mersenne primes.

Example 2.33. Let £ = Q, £ = 2, and parametrize the possible
sets S as follows: identify S C {3,5,7,11,...} with a unique point
in {0,1}" in the obvious way, and place the iid (1/2,1/2)-measure on
this set. Assume that n; < ny, < ... is a sequence of primes for which
p; = 2™ — 1 is prime. Now for almost every S, there is a sequence
J1 < J2 < ... of primes with p; € S for all k. Now for any such S,

Per;, (a(®25) = [P — 1] x |2 ~ 1], = 1
SO

1
lim inf — log Per(a(@29)) = 0

n—oo M

almost surely. On the other hand, for almost every S there is a sequence
0 < ly < ... with py, ¢ S for all k. Now for any such 5,

Pery, (a(@%9)) = 2% — 1],
SO

1
lim sup — log Per(a(@%%)) = log 2
n

n—oo

almost surely.
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In fact the full Mersenne prime conjecture is not needed to reach the
conclusions of Example 2.33: all that is needed is the weaker assump-
tion that Y °° 279"~ = oo, where w(N) is the number of primes
dividing N.

What can be said without making any assumptions?

Theorem 2.34. Let k = Q, £ = 2. Then for almost every S

lim sup 1 log Per,, () > 1log 2.
n—oo M 2
Proof. This is proved in three steps: the first is to show that the set of
S for which the upper limit is positive must have positive measure. The
second is to show that there is an ergodic transformation on the set of
S’s that preserves the upper limit, so that there must be a set of full
measure on which it is constant (and positive by the first part). The
third is to use an involution on the set of S’s and the Artin-Whaples
product formula to see that this upper limit must be at least half the
entropy.

STEP 1: Let

1
E = {S | lim sup — log Per, (a(Q’S’Q)) > 0} ;
n—oo n
I claim that E has positive measure. Let S = S U {cc}, and assume
that E has zero measure. Then for almost every S,
1
(2.9) lim —log [ |2" - 1, = 0.

n—oo N, -~
veS

On the other hand, we know that

1
2.10 lim —1 2" — 1] = log2 > 0.
(2.10) Jim ~ Ogvg[ool | =log

Now let S* = {v | v ¢ S} U {2, 00}. By the product formula,

(2.11) [Tl > T Inle =127 = 1] x 2" = 1] = [2" — 1].
veS vES*
The three equations (2.9), (2.10), (2.11) together imply that for almost
every S,
1
(2.12) lim —log [ [ 2" — 1], = log2 > 0,

n—oo M, -
veS

which contradicts (2.9). We deduce that E must have positive measure.
STEP 2: Notice that the set E certainly does not contain the set .S =
{2,3,5,7,...} of all primes (corresponding to the point (1,1,1,...) €
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{0, 1}M). So if we write the primes as {p;,ps, ...}, any member of E
looks like

S = {pn(l);pn(Q);pn(?,), e }7

with n(1) < n(2) < n(3) < ... and n(j) = j only finitely often: for
j=1,...,r say. Then define a map V on the set of all S by

V(S) = {Vm(l)a Um(2), Vm(3)s - - - };

where m(1) =n(r) +1,m(l) =n(r+¢—1) for £ > 2 if n(1) = 1, and
m(l) =1,m(l) =n(l —1) for £ > 2 if n(1) > 1. If sets S are thought
of as sequences of 0’s and 1’s, then V is the add-and-carry odometer,
ergodic with respect to the (1/2,1/2) iid measure. By Step 1, for any
S € E there is a sequence n; — oo for which

1
— log I[] 2v-1—h>0
J

peSU{oco}

say. Now the difference between S and V(S) is only finitely many
primes, and we have already seen in Lemma 2.24 that the product over
finitely many terms has zero logarithmic growth rate. It follows that

1
— log H 12" — 1| = hy > 0

J peS*U{oo}

also. Thus the actual value of the upper limit must be positive and
almost everywhere constant by the ergodic theorem.

Step 3: Finally, we want to show that the common value is not too
small. To do this we use the involution from Step 1 again. Let hg
denote the almost everywhere value of the upper limit. If hy < %log 2,
then by (2.11) we must have the upper limit > %logQ on the image of
that set of S’s under the map S — S*. This is clearly impossible, so
the upper limit is at least %log 2. O

Of course the upper limit is expected to be exactly log2 almost
everywhere.

As is often the case, the geometric (positive characteristic) case turns
out to be more tractable, and in some cases one can simply prove the
basic expected result.

Theorem 2.35. Let k = F,(t), £ =t. Then for almost every S and
for some p,

1
lim sup — log Per, (a)) = log p.
n

n—oo
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What this means is that there is a probability space of isometric
extensions of the full p-shift, and for almost every member of that
space the extended system still has many periodic points. The positive
characteristic analogue of the Mersenne prime conjecture appears here
again, with the difference that it is (almost) solved. The proof therefore
follows Example 2.33 rather than Theorem 2.34.

Proof. Using Lemma 2.19, we have that

Pery (o) = [t" = oo x [ [ 1" = 1[o = p" x [ " = 1o

vES veS

Now assume that n is prime (we are only after an upper limit). A stan-
dard fact from finite fields — see [11, Th. 2.47] — gives the factorization
of t" — 1 over I, (this is analogous to having a ‘formula’ for the prime
factors of 2" — 1):

(n-1)/f
1=t -DA+t+2 ) =-1) [] ),
=1

where each (;(t) is irreducible and f is the least positive integer for
which p/ = 1 mod n. Using Theorem 2.29 we may choose the charac-
teristic p in such a way that there are infinitely many prime values of
n for which the corresponding f is (n — 1). That is: after eliminating
(at most) two values of p, the polynomial (1 + ¢+ t* +--- + ") is
irreducible for infinitely many primes n. By Borel-Cantelli, we may
assume that for almost every S infinitely many of those irreducibles
are not in S; along that sequence we have

Per, (o) = p" x ¢,

(where e, is 1 if the place corresponding to (t — 1) is not in S and is p
if it is in .9), so
1
lim sup — log Per,, (o) = logp = h(«).
n—oo N

Similarly, for almost every S there are infinitely many of those irre-
ducible polynomials in S, giving a sequence along which

Per, (o) = p" x e, x p~ ™Y,
SO

1
lim inf — log Per,, (o) = 0.

n—oo M
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In summary: asking for the dynamical behaviour of a typical com-
pact group automorphism turns out to involve a network of questions
in arithmetic of some subtlety.

3. BERNOULLICITY AND RECURRENCE

In the last section we saw some topological properties of compact
group automorphisms. However the first way in which compact group
automorphisms entered ergodic theory was as measurable systems: if
a: X — X is a compact group automorphism, then « preserves the
Haar measure A on X. Theorem 2.13 gives a characterization of ergod-
icity for group automorphisms. Rokhlin showed that ergodicity implied

positive entropy for such systems in [55], and later showed that ergodic-
ity implies completely positive entropy in [59] (this was extended to the
non-abelian setting by Yuzvinskii in [82]). Katznelson [35] introduced

an approach to these systems that used Fourier analysis and Diophan-
tine approximation arguments to show that an ergodic automorphism
of the k-torus is isomorphic to a Bernoulli shift. This argument was ex-
tended to automorphisms of the infinite-dimensional torus by Lind [12]
and Aoki and Totoki [I] using algebraic reduction steps. The general
result, that an ergodic automorphism of a compact group is isomorphic
to a Bernoulli shift was eventually shown independently by Lind [13]
and Miles and Thomas [51]. The shape of these proofs proceeds via sev-
eral steps, and our purpose here is to isolate one of these steps, where
the Diophantine problems arise, and describe a recent observation of
Lind and Schmidt [18] that uses the product formula for number fields
to obtain the desired estimate.

Recall that an invertible measure-preserving transformation 7" of a
probability space (X, B, i) is isomorphic to a Bernoulli shift if there is
a measurable partition B of X with the following properties.

(1) B is independent: for any k > 1, sets Ao, A1, ..., Ax € P and
distinet nq, ng, ..., ng € Z\{0},
p (Ao NT (A N NTT(Ay)) = p(Ao) - - pu(Ag).

(2) ‘B generates: the smallest o-algebra containing | J, ., 77" (B) is
(modulo null sets) equal to 5.

The claim is therefore that if a : X — X is an ergodic automorphism
of a compact group, then a partition with those properties can be found.

(1) Algebra: using methods from group theory and commutative
algebra, it is sufficient to prove this when X is a solenoid (a
group whose dual group is a subgroup of Q* for some k). These
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reduction steps are implicit in several of the papers mentioned
above; they are neatly summarized in Lind [10].

(2) Measure theory: using methods from Ornstein theory, it is
enough to find a sequence of partitions 3, that become in-
dependent and generate in the limit.

(3) Fourier analysis: using Fourier series to approximate the char-
acteristic functions of the sets in the partitions, it is enough to
show that trigonometric polynomials on X become independent
under the action of a.

The last two steps require much technical attention: in particular, if
the rate at which either of them happens is not fast enough, then they
do not guarantee Bernoullicity.

3.1. Automorphisms of solenoids. Finally, one is reduced to the
following question. Let £ be an algebraic number that is not a root of
unity. Is it possible that two expressions of the form

—n

N
(3.1) Z c;& and chfj

j:—n2 ]ZTL

can coincide with bounded coefficients ¢; € Z and large N > n?

How this question comes about is roughly as follows. The algebraic
number ¢ determines an automorphism of a solenoid as we have seen
(the group is dual to Q(§), the automorphism is dual to multiplication
by €). An expression of the form 25 ¢;&7, |A|,|B| < f(N), |¢;| < N
is a trigonometric polynomial that may be used to approximate the
characteristic function of an element of a partition. Multiplying by a
high power of £ corresponds to applying the automorphism many times
(that is, moving apart in time). Finally, the only way for characters on
a group to fail to be independent is if they coincide.

The following result and proof are taken directly from the note of
Lind and Schmidt [18].

Theorem 3.1. There exists an ng > 0 with the property that

—n N
(3'2) ﬁ = Z ijj = chfj
j=n

p—
for some N > n > ng and |c;] < |§]*° implies that 3 = 0.
Proof. Let k be the number field Q(¢), and let
S={veP(k)|vePy(k)or |, # 1}
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For any place v ¢ S, |8], < max{|c;&/|,} < 1. The set S is finite;
write the places in S as vy, va, ..., v, with [£|,, < p < 1 for i < p and
€]y, > 1 for i > p+ 1. Notice that there must be a place with [{] < 1
since ¢ is not a root of unity.

Fix ¢ < p. If v; is finite, then the ultrametric inequality and the last
term in (3.2) shows that

S

wl€l} <0,

’/6|'Uz < j—rgaXN {‘Cj

=Nyeeny

while if v; is infinite

N
v < Z ‘CJ'
j=n

for some constant C' independent of n.
Now fix i > p + 1 and use the second term in (3.2). If v; is finite,
then

|6

£

]

LSy T =Cpt
j=n

1<,

|/6|'Uz < . HlQaX {lcj|w|§
j=—n —n

goooy

while if v; is infinite,

n
Blo, < Y 131* <n®

j=—n?

Now assume that 3 # 0, and recall that |G|, < 1 for all v ¢ S. By the
product formula,

[Tl = (Hlﬁlv>_l > 1.

veS vgS

Using the estimates above this gives

=1

vES i=p+1

o < (Opn)P (n42)q =0

as n — oo. It follows that 8 must be zero if n is large enough. t

Here valuations have given a hyperbolic behaviour (witnessed by
the number p < 1) even in a non-hyperbolic setting (for example, &
could have been the number from Example 2.3(5), corresponding to a
quasihyperbolic automorphism of the 4-torus).
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3.2. Exponential recurrence. One of the outstanding problems in
the metrical theory of compact group automorphisms is the question
of whether an ergodic group automorphism is finitarily isomorphic to
a Bernoulli shift. That is, can an isomorphism be found to a Bernoulli
shift that is continuous off an invariant null set? A necessary condition
for this property is exponential recurrence.

Definition 3.2. Let T" be a homeomorphism of a compact metric space
X, preserving a nonatomic Borel measure p that is positive on open
set. For U any Borel set of positive measure, let ry(x) = min{j > 0 |
T7(x) € U}; by Poincaré recurrence 1y is finite almost everywhere. The
map T is called exponentially recurrent if u{x € U | ry(z) = n} — 0
exponentially for any open set U.

Lind proves in [16] that ergodic group automorphisms are exponen-
tially recurrent. The proof uses reduction steps as above, which leave
the case of an irreducible automorphism of the solenoid. If this au-
tomorphism has a complex eigenvalue with modulus not equal to 1,
then the resulting hyperbolic growth gives the result. Just as in the
last section, the case in which all the complex eigenvalues have mod-
ulus 1 requires new ideas, and these come from the finite valuations.
Using this hidden hyperbolicity in a finite valuation, Lind shows the
exponential recurrence.

The next example shows how this can come about.

Example 3.3. Let £ = % + %i, and consider the S-integer system with
k=Q(¢) and S = (). There are two complex places, co; and 0oy, with

€oo = 1€] =1
and
|§|oo2 - |g| =L

This means there will be no hyperbolicity in the complex component
of the covering space. However, the two places of k£ that lie above Q5
give £ norm 5 and 1/5, showing that there is hyperbolicity there.

3.3. Commuting automorphisms. The structure of Z%actions by
automorphisms of compact abelian groups will be described in more
detail later. We will see later that there are ergodic Z*-actions that
have zero entropy and therefore cannot be Bernoulli. The natural con-
jecture is that when there are no entropy constraints, ergodicity does
still imply Bernoullicity. A major result — the higher-rank analogue of
the Bernoullicity result — is the following.
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Theorem 3.4. [RUDOLPH AND SCHMIDT] If o is a completely positive
entropy Z%-action by automorphisms of a compact abelian group, then
a s measurably isomorphic to a d-dimensional Bernoulli shift.

This is proved in [00]; a feature of the proof is that the same idea
appears again. A form of asymptotic independence is needed, and this
comes from the estimate [00, Lem. 3.6] in which the product formula
for global fields is used.

4. MIXING

In Section 3 we saw that for a compact group automorphism a whole
hierarchy of mixing properties,

Bernoulli = ¢.p.e. = mixing of all orders =

mixing = mild mixing = weak mixing = ergodic

collapses into one. It is well-known that for measure-preserving trans-
formations each of the implications shown above except for mixing of
all orders = mixing is known to be strict. In this section the analogue
of this remark for Z?actions will be described. Here the picture is
much more complicated, and a whole hierarchy of mixing properties
between mixing of all orders and mixing emerges. Most of the material
in this section is taken from [19], [65], [66] and [76]. The structure of
non-mixing shapes and related problems to do with finding measurable
invariants is not dealt with here in any detail but may be found in the
papers [37] and [63].

Let T be an action of some countable group I' by measure-preserving
transformations of a probability space (X, B, ). In the group T, write
g — oo for the statement: for any finite set F' C I', ¢ is eventually
not in F. For example, if I' = Z, then ¢ — oo means |g| — oo in the
usual sense. The mixing notions introduced below will be phrased for
a general group I', but all the examples later will be for abelian groups.

Definition 4.1. Let T be a measure-preserving ['-action.

(1) T is ergodic if any A € B that is invariant under 7' (that is,
A=T_,(A) up to null sets for all g € I') must have p(A) =0

or 1.
(2) T is rigid if there is a sequence g — oo with the property that

p(T_g(A)AA) — 0 for all A € B.
(3) T is mixing if for any A, B € B
Jlim (ANT-y(B)) — p(A)u(B).
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(4) T is k-fold mixing, or mixing on k sets, if for any Ay, ..., Ay € B,
9ig; ' —003iF]

lim (T g (A) N NT, (Ar)) — H,u(Ai).

(5) T is mixing of all orders if it is mixing on k sets for all k.
(6) A finite set F' C I' is a mixing shape for T if for any sets

Af7 f cFinB
Tim g (ﬂ T—f”(Af)> — () u(Ay).
fer fer

One of the central problems in ergodic theory is whether for Z-actions
mixing implies mixing of all orders. A very interesting recent result
in [61] shows that amenable group actions with completely positive
entropy are mixing of all orders.

The first examples show that ergodicity does not imply mixing, and
that mixing does not imply mixing of all orders, for Z%actions with
d> 2.

Example 4.2. Let S : X — X be an ergodic measure-preserving
transformation. Define a Z2-action T on X by Tiap) = S* Then T
is certainly ergodic because T{; ) is, but is not mixing because, for
example, T{o 1) is the identity.

A more subtle phenomena, the full ramifications of which are not
entirely understood, comes from Ledrappier’s example [39].

Example 4.3. [LEDRAPPIER] Let
X ={z € {0, 1}Z2 | Z(nm) + Tnt1,m) + Tmmiry = 0 mod 2V n,m},

and define a Z*-action o on X by the shift: (a(as)(2))(n.m) = T(atnbtm)-
We shall see later that a is mixing. However, it is not mixing on 3 sets:
notice that if x € X then for any n,

(41) .T(070) + x(gnyo) + .fl?(072n) = 0 mod 2

(this is simply a consequence of the shape of Pascal’s triangle mod 2).
The relation (4.1) makes it impossible for « to be mixing on 3 sets. If
A={z € X |00 =1}, then p(A) = 1 (since X is the disjoint union
of A and A +y, where y is any point in X with y0 = 1). On the
other hand, (4.1) shows that

A m 06(07_2n) (A) ﬂ CY(_27L70) = Q’

so « 1s not mixing on 3 sets.
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The abelian alphabet {0, 1} makes the mixing break down; some ex-
amples with a non-abelian alphabet that are more mixing are discussed
in [74].

An important difference between the general case and the algebraic
case is shown up by the following, taken from [76].

Theorem 4.4. An algebraic Z*-action by automorphisms of a compact
abelian group is mixing of all orders if and only if it has no non-mixing
shapes. In contrast, there are measure-preserving Z-actions for d > 2
that are rigid and have all shapes mizing.

The first part of this theorem is surprisingly deep. The second part is
a Gaussian measure-space construction due to Ferenczi and Kaminski

[27]-

4.1. Background from algebra. In order to try and understand the
mixing properties of an algebraic Z4-action, some background ideas are
needed. These can all be found for example in the book [65] and were
first used systematically in this context in the paper [30] . The basic
idea is to use Fourier analysis to translate a mixing property into a
statement in commutative algebra, and then use algebra to study that
statement. This has been implicit in much of what has already been
discussed, and will be used again in Section 5.

Let a be a Z%action by automorphisms of the compact metrizable
abelian group X. Dual to a is a natural Z4-action on the countable
dual M = X. If the action of ag, is identified with multiplication by
a variable u;, then the additive group M acquires the structure of a
module over the ring Ry = Z[ui",...,ur']. The same construction
works in reverse: if M is any countable Rg-module, then it defines a
corresponding Z%action o™ on the group M. It will be convenient to
write u® for the monomial uj* ... u}".

Example 4.5. If M = Ry/(2,1 + uy + ug) then the corresponding
system is Ledrappier’s example (cf. Example 4.3).

As we have seen in several situations, the algebraic structure allows
for mixing problems to be reduced to a simple case. To describe this, we
examine Definition 4.1 in more detail for a Z%action a on a non-trivial
compact group

(X, B = Borel sets, n = Haar measure).

A sequence (ngj ), ngj ), o ,ngj )) of r-tuples of elements of Z¢ is mixing

for o if for any sets Ay,..., A, € B,
(42)  limp (afngﬂ(Al) — afngj)(AT)) (A - (A,
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This certainly requires that

(4.3) n') — nt) — 0o as j — oo for every s # t.

If this condition is also sufficient (that is, if (4.3) implies (4.2)) then
« is mixing of order r. A finite set {n;,...,n,} of integer vectors is a
mixing shape for « if

(44) i (g, (A1) NN g, (Ar)) = p(Ar) - - p(Ar).

As in Section 3, the question of whether a given sequence is mixing for
a given system can be translated into another form and then simplified.

(1) Approximation: The mixing property (4.2) holds if and only
if the a priori stronger property that for any L*(u) functions

7"'7f7‘7
(4.5) / Pty (@) .- foloo (@) du(e) — ] /X fidp as j — o0
=1

holds. In one direction this equivalence is trivial, for the other
direction approximate the functions by linear combinations of
indicator functions of measurable sets.

(2) Fourier analysis: Property (4.5) holds if and only if for any

elements my, ..., m,, not all zero, of M = X , the equation
) )
(4.6) u™ my 4 u™ m, =0

has only finitely many solutions in j. This may be seen by
approximating the functions with trigonometric polynomials.

(3) Algebra: Call a prime ideal p C R, an associated prime of the
module M if there is an element m € M for which p = {f €
Ry | f-m =0¢€ M}. Then an algebraic argument in the
module M (see [37] for the details) shows that equation (4.6)
has only finitely many solutions in j if and only if for every
prime ideal p associated to M, and any elements aq, ..., a,, not
all zero, of Ry/p, the equation

(4.7) ungj)al +--- 4+ ungj)ar =0

has only finitely many solutions in j.

Thus the mixing problem for Z?-actions by automorphisms of com-
pact abelian groups is reduced to the following problem: describe the
solutions of equations like (4.7) in rings like 2R, /p.
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4.2. Order of mixing — connected case. First let us assume that
X is a connected group. This is equivalent to assuming that for any
prime ideal p associated to the corresponding module, pNZ = {0}. By
the remarks in the last section, it is enough to consider cyclic modules.

Example 4.6. Let M = MRy /(u; — 2,us — 3); the corresponding dy-
namical system « is the invertible extension of the semi-group action
generated by z +— 2z and z +— 3z mod 1 on the additive circle. As-
sume that « is not mixing on r sets for some r. Notice that there is an
isomorphism Rs/(u1 — 2,uy — 3) — Z[¢] of additive groups, and under
this isomorphism multiplication by u; (resp. usy) is sent to multiplica-
tion by 2 (resp. 3). So the non-mixing sequence on 7 sets is witnessed
as follows: there are rationals aq,...,a, € Z[%], not all zero, and a

sequence (n{’ 0%’ ... nY) with

ngj) —n,gj) — 00 as j — oo for every s # ¢

such that
2 o) n@) on @)
(4.8) 2Mag3"M2qy + .- 4 2"13"%2q, = 0 for all j > 1.
This equation is a simple example of an S-unit equation; a deep result
by Schlickewei (see [62] for example) says that (4.8) has only finitely

many solutions in different values of the vector (ngj ), ng ) .nY )) (and
hence of the index j) unless some subsum of the left-hand side vanishes
infinitely often. By the characterization of mixing given above, this
forces the action a to be non-mixing for some order ¢ < r. On the
other hand, « is clearly mixing on 2 sets, so we deduce that « is mixing
of all orders.

Thus the x2,x3 system is a mixing of all orders, zero entropy,
Markov shift. Using entirely different methods Mozes constructed an-
other example of this phenomena (see [51]).

Roughly the same method may be used in general. There is a sub-
stantial obstacle to be overcome when the underlying group is not
finite-dimensional, in which case the corresponding field has positive
transcendance degree, and for this case one needs not just the qualita-
tive theorem that S-unit equations have only finitely many solutions,
but the quantitative S-unit theorem that gives a uniform bound for
the number of solutions in terms of r and the field. Using this gives
the following theorem from [60].

Theorem 4.7. [SCHMIDT AND WARD] A mizing Z%-action by automor-
phisms of a compact connected abelian group is mixing of all orders.
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4.3. Order of mixing — disconnected case. Now assume that X is
a totally disconnected group carrying a Z?-action «. This is equivalent
to assuming that for each prime ideal p associated to the module cor-
responding to «, p N Z = pZ for some prime p. Thus we may assume
that equation (4.7) takes place in a ring of the form D‘i&p ) /p, where

i)‘iglp ) = F,[ui', ..., uf']. The first observation is that something like
Example 4.3 must happen unless the ideal p is trivial.

Theorem 4.8. Ifp # {0}, then the system corresponding to the module
iRElp ) /p has non-mixing shapes.

Proof. By assumption, there is a polynomial f € p that is not a mono-
mial. Let S = S(f) be the support of f; this is a finite subset of Z%
with at least two elements. Then exactly the same argument as that
used in Example 4.3 shows that S is a non-mixing shape. U

A simple consequence of this is that a Z? action by automorphisms
of a zero-dimensional group is mixing of all orders if and only if it is
isomorphic to a d-dimensional Bernoulli shift. Put another way, this
means that the only way such an action can fail to be mixing of all
orders is to have a factor that looks like the system corresponding to
fﬁgp ) /p for some non-trivial prime ideal p.

Theorem 4.8 is the starting point for an intricate puzzle: given p,
find all the non-mixing shapes for the system corresponding to the
module %l(f )/p. The importance of this problem comes from the fact
that non-mixing shapes are a new kind of measurable invariant specific
to the higher-rank setting. For a complete discussion of this, see [(5,
Chap. VIII]. The problem of finding non-mixing shapes is in principle
algebraic.

In this section I want to discuss a slightly different problem: finding
the exact order of mixing, which is closer to a Diophantine problem.
The basic conjecture states that there is no obstacle to mixing that
does not come about from non-mixing shapes. We take the following
from [19].

Conjecture 4.9. An algebraic dynamical system for which all shapes
of cardinality r are mixing is mixing of order r.

That is, we conjecture that it is never possible to exhibit failure to
mix of a certain order with some exotically shaped sequence unless
there is a simple shape that witnesses failure to mix of that order.
A degenerate case is when all shapes are mixing: then Theorems 4.7
and 4.8 show that Conjecture 4.9 holds. It also holds for Ledrappier’s
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example, because that is mixing on 2 sets but not on 3 sets, which is
witnessed by a non-mixing shape.

The result that may be proved using the methods of [19] proves
Conjecture 4.9 for some more cases.

Theorem 4.10. Ifp = (f) is a principal mgp)-module, and the support
of f comprises the vertices of a tight polyhedra, then Conjecture /.9

holds for a?d /b,

In the remainder of this section we will explain what this means and
how it comes about by proving it for d = 2.

The type of polyhedra we are interested in are convex hulls of finite
sets of points in Z.

Definition 4.11. A parallel redrawing of a polyhedron P is another
polyhedron P’ with the property that each edge e of P is parallel to a
single edge of P’. A polyhedron is tight if any parallel redrawing must
be homothetic to the original polyhedron.

The terminology is taken from the slightly different setting of [14]
and [31].

Example 4.12. To make sense of Definition 4.11, consider the follow-
ing examples.

(1) For d = 2 there is only one tight shape, and that is the triangle.
(2) For d = 3 there are many tight polyhedra. Roughly speaking,
a polyhedron with many triangular faces will be tight.

FIGURE 9. A parallel redrawing of the cube

(3) Of the platonic solids, the tetrahedron, octahedron and icosa-
hedron are tight, while the cube and dodecahedron are loose.

(4) All the geodesates are tight. This gives many easy examples of
very complex tight polyhedra.
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F1GURE 10. The tetrahedron is tight

Let M(amgp)/ (/1) denote the order of mixing — the largest value of

r for which (4.3) implies (4.2) — of a®¢ /", where f is an irreducible

polynomial in F,[u;",u53?]. Finding M(a®/4) s difficult (see [65,

Sect. 28]) even for this special class of systems. Let S(f) denote the
support of f, and N(f) the convex hull of S(f).

Theorem 4.13. Assume that N(f) is an R-gon and [ is irreducible.
Then

R—1<M@™/) < [S(f)].
Theorem 4.14. Conjecture 4.9 holds when r = 3.

The method of proof of Theorem 4.13 is to show that an arbitrary
non-mixing sequence for of®2/? must asymptotically reflect part of the
structure of N(f) (the slopes of the faces). Proving Conjecture 4.9
would involve showing that the exact structure of N(f) appears, and
the reason Theorem 4.14 holds is that a triangle is the only tight polyhe-
dron in 2 dimensions. Thus Theorem 4.14 is a special case of Theorem
4.10.

The key step in the proof is to construct valuations that reflect the
geometry of N(f). To clarify this, an example is described in detail.

Example 4.15. Let f(uy, us) = us + u; + u3us, and view f as an ele-
ment of F,(ug)[u1]. Choose a norm | - | on Fj(ug) with |us| = %. This
norm extends in two ways to the field K = F,(u2)[u1]/(f), determined
by the Newton polygon of f viewed as a polynomial for u; with coef-
ficients in F,,(uz). The four points that define the Newton polygon are
(0, —log,, |uz]), (1, —log,[1]), (2,00) and (3, —log, |us|). From Figure
12 it follows that the two extended norms | - |, | - |2 have |ui|; = ]lg
(from the line segment with slope —1) and |ui|s =/p (from the line
segment with slope 1/2).
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F Fy
Uy

FIGURE 11. The faces of N(uy + u; + uduy)

—
[\
w

FIGURE 12. The Newton polygon of f € F,(u2)[u1]

Thus the vector (Ing |u1|1> = (_1) is normal to the face F} and

log,, |uz]y —1
points out from N(f). The same expression using |- |2 gives an outward
normal to the face Fj.
Finally, if the initial norm on F,(u2) is chosen with |us| = p, then
the corresponding Newton polygon shows only one extension, and the
resulting norm gives an outward normal to the face Fj.

Proposition 4.16. Assume that (AY) = ( Dl ) s a se-
quence with the property that

(4.9) ™ 4 mpu™ ™ =0

for all j, where my,...,m, € R/p\{0}. Write N(AY) for the convex
hull of AU). Then there is a constant K > 0 such that for each face F
of N(f) there is a face of N(AY)) spanned (without loss of generality)

by ngj),néj), and there is a vector mY) with the property that the line

through ngj), m) is parallel to F' and ||m\) — ngj)H <K.
Proof. Pick a face F' of N(f). Using the irreducibility of f, construct

as in Example 4.15 a norm | - | on Ry/(f) so that log, || is an
log,, |us|

outward normal to N(f) through F.
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Choose K so that K > 2max;_; . ,{|log, [m;||}.

Find an F-exposed vertex p; = n( in AU, let ¢ be the line through
p; parallel to F', and assume that no other point in AY) is within

distance K of ¢. Then for nl(»j) # Py, logp|u“1('j>mi] < log, [uPimy/,
which contradicts (4.9). It follows that there is another vertex of A
within the strip as required. O

Proof. (of Theorem 4 13) First recall that S(f) is automatically a non-

mixing shape for ™ /) by the method of proof of Theorem 4.8, so

M(« R /) M < |S(f )| On the other hand, each of the R faces of N(f)
must asymptotically appear in N(AY) for a non-mixing sequence (AV))
by Proposition 4.16. It follows that R — 1 < M(af2/¥). O

Proof. (of Theorem 4.14) If N(f) lies on a line, then o/ cannot
be mixing. If N(f) is an R-gon with R > 3 then Theorem 4.13 shows

that M(am&p)”f)) > 3. So assume that N(f) is a triangle, that o)

is not mixing on 3 sets, and that all triangles are mixing shapes for

o™’ /() This means that there are non-zero polynomials a, b, ¢ with

(J) (4) (J)
au™ +bu™2 +cu™ =0

for all j. By Proposition 4.16 each of n1 , Ny ), gj ) lie within a bounded

distance of the vertices of some dilate of N(f). Multiplying a,b, ¢ by
monomials chosen to shift the vertices a bounded distance onto the
vertices of an integer dilate of S(f), produces an equation

du™ 1y - um? =
that witnesses a non-mixing shape of order 3. This contradicts the
assumption. 0

Example 4.17. Theorem 4.13 shows that if f is an irreducible poly-
nomial for which the support S(f) coincides with the extreme points of

the Newton polygon N(f), then M(a™ R/ MYy =18(f)| — 1. In order to

produce an example with prescribed order of mixing M(amilp)/ N =k,
it is therefore sufficient to exhibit such an irreducible polynomial with
|S(f)] = k+ 1. This may be done using Eisenstein’s irreducibility
criterion (see [10] for a general valuation-theoretic treatment of the
Eisenstein criterion). Two simple examples will illustrate the method;
it is clear from these how to build an example for any order of mixing.

(1) To find an example with order of mixing 3, consider f(uy,us) =
u? 4+ uyud + uiy +uy € Flug)[us]; the prime uy € Fluy| divides the
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coefficients u3 and u3 +uy but u3 does not divide the coefficient
u3 + uy. The support of the polynomial is shown in Figure 13.

3
Uy

U U

U2

)
Uy
FicURE 13. The support of a polynomial giving 3-fold mixing

(2) To find an example with order of mixing 4, let f(uj,uy) =
ul +ufug+udus+us+ul. As before, this is seen to be irreducible
by viewing it as a polynomial in u; with coefficients in Fluy].
The support of the polynomial is shown in Figure 14.

3
Ug
3,2

U Uy

U9 UiU

> G
Uy
FIGURE 14. The support of a polynomial giving 4-fold mixing

Notice that in these examples we are choosing the shape of the support
freely; it is also possible to find examples for which any prescribed shape
is the minimal non-mixing shape by [70], though not in a constructive
fashion.

Example 4.18. Theorem 4.14 shows that the system corresponding
to the ideal p = (2,1 + uy + us + u3) is 3-mixing, answering a question
in [65, p. 283].

Example 4.19. In the previous example, we used the fact from [(5)]
that no shape with cardinality 3 is non-mixing. An alternative method
to show this is to use a result of Voloch on solutions to ax + by =1 in
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functions fields. Consider again p = (2, 1+u; +us +u3); then Theorem
4.13 says that

2 < M(a2/?) < 4,
and we wish to show that M(a®2/?) = 3. To see this, assume that
<n§j), 0 0l = 0)
is a non-mixing sequence for a®2/? with nt) — ngj ) 00 as j — oo for
s # t. Then there are elements my, mgy, m3 of Ra/p, not all zero, with

() ()
(410) 7’I’L11_ln1 +m2un2 = —mg

for infinitely many j. The field of fractions of PRs/p may be identified
with Fy(t) by the map uy — ¢, ug — 1+t + ¢, and in this field (4.10)
becomes

(4.11) ar +by =1

with infinitely many solutions for x,y in the finitely generated multi-
plicative subgroup G = ({t, 14+t +t%)) of Fo(¢)*. By [72], it follows that
(4.11) is a G-trivial equation: there is an n > 1 for which a™,b" € G.
Since G is generated by irreducible polynomials, this can only be true
if a,b € G. So there is an infinite family of equations

(4.12) un g =

with mgj), mgj), and mgj) — mgj) — 00 as j — 00. By considering the
shape of N(1+u;+u?+us), this shows that the polynomial in (4.12) has
the same shape as N(1 + u; +u? + uy), so (without loss of generality),

mgj) = (0,m(j)) and mgj) = (2m(y),0) for some m(j) — oo. Thus the
equation reduces to

(4.13) (14t +2)m0) = 1 4 2m0),

Write m(j) = 2, ¢ odd, for some e > 0. Then the left-hand side of
(4.13) is

(1+t+t2)*" = (1+t+0(H))*
= 1+t +0*)”
= 14+

which is impossible. It follows that M(a%2/?) = 3.
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4.4. Typical actions. The analogue of Section 2.8 is even less acces-
sible for commuting automorphisms. The entropy has been computed
in terms of the prime ideals associated to the module — see [19, Th. 4.4]
— and is built up from the cyclic case.

Theorem 4.20. The topological entropy of the Z%-action o™/? is 0 if
p 1s non-principal, and is given by

1 1
) =m(f) = [ o [loglp@me sy ds
0 0

ifp=(f)

It turns out that Lehmer’s Problem 2.31 is not changed by passing
to more variables: 0 is a cluster point of {m(f) | f € Z[z]} if and only
if 0 is a cluster point of {m(f) | f € R4} for some d > 1. This is a
consequence of a non-trivial approximation result due to Lawton [38]
(see [20] for a simple treatment). It follows that it is not known what
the possible entropies of algebraic Z?-actions are.

Beyond that, the algebra of higher-rank S-integer systems is quite
subtle, and there are real difficulties associated with formulating the
analogue of S-integer dynamical systems in higher rank. For some
results see [52] and [53].

5. SUBDYNAMICS

As we have seen, the problem of understanding the dynamics of alge-
braic Z%actions can always be reduced to statements in commutative
algebra, and for these valuations are a powerful tool. The last dynam-
ical property we will discuss is the geometric notion of subdynamics:
for a given Z9-action, what properties do lower-rank subactions have?
The material here is taken from the papers [3], [20], and [21].

Let 3 be a Z%action by homeomorphisms of a compact metric space
(X, p). For a subset F of R? define a new (pseudo-)metric by

P (x,y) = sup{p(8™(x), *(y)) : n € FNZ},
and if F'NZ* =0 define p§ (z,y) = 0.

Definition 5.1. The Z%action 3 on (X, p) is said to be expansive if
there is a 0 > 0 with the property that

(5.1) Py <i=a=y.

Any § > 0 satisfying (5.1) is called an expansive constant for 3.



VALUATIONS AND HYPERBOLICITY IN DYNAMICS 41

For t > 0, let
F' = {x e R?: dist(x, F) < t},

where dist denotes the usual Euclidean distance. Thus F* is the result
of thickening F' by t. This device of considering thickened subsets
comes from [8] and is an implicit way of passing from the countable
collection of rational subspaces of Q¢ to the compact Grassmanian. An
alternative way to compactify the space of directions is to replace the
original Z?-action with a Re-flow on a suspension — see [32], [33].

Definition 5.2. A subset F' C R? is expansive for 3 if there are € > 0
and ¢ > 0 such that

t
ph (z,y) <e=ax=y.

Every subset of a nonexpansive set for 3 is nonexpansive for 5. Every
translate of an expansive set is expansive by [3, p. 57]. In Definition
5.2 € can be fixed for § [3, Lemma 2.3].

Let G, = G, denote the Grassmann manifold of k-dimensional sub-
spaces (or k-planes) of R% G, is a compact manifold of dimension
k(d— k) whose topology is given by declaring two subspaces to be close
if their intersections with the unit sphere are close in the Hausdorff
metric.

Definition 5.3. For a Z%action 3 define
Ex(8) = {V € G : V is expansive for 3},
Ni(5) = {V € Gj : V is nonexpansive for }.

An expansive component of k-planes for (3 is a connected component

Example 5.4. [LEDRAPPIER’'S EXAMPLE| Take d = 2,
X = {z € (2)22)" Tij+ Tip1,; + xij+1 =0 (mod 2) for all 4, 5},

and let 8 be the Z2-action generated by the horizontal and vertical
shifts. If L is a line that is not parallel to one of the sides of the unit
simplex in R? and ¢t > 2, then for each z € X the coordinates of z
within L' determine all of z, so that L € E;(3). On the other hand,
the three lines parallel to the sides of the simplex do not have this
property, and they comprise Nq(3) (see [3, Example 2.7] for details).

Coding arguments [%, Lemma 3.4] show that each Ej(3) is an open
subset of Gg, so that each Ng(/3) is compact. Hence expansive compo-
nents of k-planes for 3 are open subsets of G,. If W is nonexpansive
for § and V is a subspace of W, then V is also nonexpansive for J3.
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A basic result [8, Theorem 3.6] is a sort of converse to this: If V' is
a nonexpansive subspace for g of dimension < d — 2, then there is a
nonexpansive subspace for 3 containing V' of one higher dimension. If
X is infinite, then the zero subspace is nonexpansive, and hence each
Ng(B) # 0 for 1 < k < d — 1. Hence Ni(5) consists of exactly all
k-dimensional subspaces of the subspaces in Ny_1(3). Thus Ng_1(5)
determines the entire expansive subdynamics of (3.

In order to treat algebraic Z%actions, it is convenient to shift our
viewpoint slightly and use half-spaces in R? rather than (d — 1)-planes.
Let St = {v € R?: ||v|| = 1} be the unit (d—1)-sphere. For v € S%*
define H, = {x € R?: x-v < 0} to be the half-space with outward
unit normal v. Let Hy be the set of half-spaces in R?, which we identify
with S ! via the parameterization v « H,. For H € Hy we denote
its outward unit normal vector by vy.

Expansiveness along a half-space H is defined using Definition 5.3
with /' = H. Observe that thickening H, by ¢t > 0 results merely
in the translation H, + tv of H,. Hence there is no need to thicken
half-spaces in the definition, and a Z%action 3 is therefore expansive
along H if and only if there is an € > 0 such that pf (z,y) < e implies
that © = y.

Definition 5.5. For a Z%action 3 define
E(3) = {H € Hy : H is expansive for 3},
N(3) = {H € H, : H is nonexpansive for }.

An expansive component of half-spaces for (3 is a connected component

of E(B).

Remark 5.6. A coding argument analogous to [3, Lemma 3.4] shows
that E(/) is an open set and so N(/3) is a compact set.

The following lemma shows that a (d — 1)-plane is nonexpansive
for 3 if and only if at least one of the two bounding half-spaces is also
nonexpansive for 5. Thus if we define 7: Hy — G4_1 by n(H) = 0H,
then 7(N(3)) = Ng_1(5). This shows that the half-space behavior N(3)
determines the expansive subdynamics of (.

The following key definition is taken from [%, Definition 3.1].

Definition 5.7. Let 3 be an expansive Z%action with expansive con-
stant 8. For subsets E, F of R? we say that E codes F provided that,
for every x € R, if pf™(x,y) < 6 then pf™(z,y) < 6.

Lemma 5.8. Let 3 be a Z%-action and V € Gy4_1. Then V € Ny_1(53)
if and only if there is an H € N() with OH =V .
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Proof. If H € N(f3), then V = 0H C H is also nonexpansive.

Conversely, let V € G4_1 and H = H,, H = H_, be the two half-
spaces with boundary V. Suppose that both H and H’ are expansive
for 3. We prove that V is also expansive for 3, which will complete the
proof.

Since (8 has an expansive half-space, it is an expansive action. Let
d > 0 be an expansive constant for 5. Let B(r) denote the ball of
radius r in R?, and [0, v] be the line segment joining 0 to v. A “finite”
version of the expansiveness of H, entirely analogous to [%, Lemma 3.2],
is that there is an r > 0 such that HNB(r) codes [0, v]. Similarly, there
is an s > 0 such that H' N B(s) codes [0, —v]. Hence if t = max{r, s},
then V* codes V™!, which by the same argument codes V™2, and so
on. Thus V* codes RY, which means that V is expansive. 0

As a starting point, Schmidt [(4] gave the following characterization
of expansiveness for o™. For an ideal p C Ry, let

Vip) ={z=(21,...,240) € (C)": f(z1,...,29) =0 forall fep}.

Let ST = {(z1,...,2q4) € C?: |2| = -+ = |z4] = 1} be the multiplica-
tive d-torus.

Theorem 5.9. The Z-action o™ is expansive if and only if both

(1) M is a Noetherian Ry-module, and
(2) for each prime ideal p C Ry associated to M, V(p) NS? = ().

The first condition — algebraic in nature — is necessary for the follow-
ing reason. If M is not Noetherian, then there is an infinite ascending
chain of submodules {0} C M; C My C ... inside M; their annihila-
tors form an infinite descending chain of closed a™-invariant subgroups
{0}* = Xu D M D My D ... with (5, M;- = {0}, showing that
aM is not expansive. The second condition — which is geometric — is
necessary because from a point in V' (p)NS? a point may be constructed
whose orbit under the action of o stays close to 0.

The main result in [20] is a directional version of this theorem. There
are several steps involved in this, and the two different requirements
for expansiveness each have their own analogues. For H € H,, define
the ring Ry = Z[u™ : n € HNZY, which is a subring of SRy In general
Ry is not Noetherian; indeed, Ry is Noetherian exactly when vy, is
a rational direction in the sense that Rvy N Z4 # {0}, so that Ry is
Noetherian for only countably many H.

Theorem 5.10. Let M be a Noetherian Ry-module, o™ be the cor-
responding algebraic Z-action, and H € Hy. Then the following are
equivalent.
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(1) o™ is expansive along H.

(2) a™/? is expansive along H for every prime ideal p associated
to M.

(3) Ra/p is Ry-Noetherian and [0, 00)vy Nlog [V(p)| = O for every
p € asc(M).

In order to work with this result, it is important to give a more
computable version of the SRy-Noetherian property. This is discussed
in detail in [20] and [21]. From [20] we take the following theorem.

Theorem 5.11. Let M be a Noetherian Rg-module, H € Hy, and
k € Z¢ ~ H. Then M is Ry-Noetherian if and only if there is a
polynomial of the form uX — f(u) with f(u) € Ry that annihilates M.
It follows that there is an algorithm that describes the set of those H
for which a given module M s Ry -Noetherian.

The last part of this theorem relates to a slightly different kind of
problem than those we have mentioned. That is, given a presentation
of a module, how does one set about actually computing some of the
dynamical properties of the associated system? In particular, for which
properties are complex syzygy computations required? See [22] and [20,
Sect. 6] for some discussion of this.

5.1. Examples. Using the correspondence Hy <+ S ! given by H «
vy, subsets of H; may be identified with the corresponding subsets of
S9!, Using this convention, for an ideal a € SR, define

N"(a®/%) = {v € S%"! : Ry/a is not Ry,-Noetherian},
NY(a™/%) = {v € S : [0, 00)v N log |V(a)| # 0}.

Observe that NY(a™/%) is the radial projection of log |V(a)| to S~
By Theorem 5.10,

N(amd/a) — Nn(amd/a) U Nv(ai)‘td/a>.
In the case of a principal ideal (f) in Ry we abbreviate V({f)) to V(f).

Example 5.12. Consider Example 4.6 again. As we saw, this has
a surprisingly mixing property, despite having zero entropy. Here
M = Ry /(u; — 2,uy — 3); the corresponding dynamical system « is
the invertible extension of the semi-group action generated by x +— 2x
and = — 3z mod 1 on the additive circle. Write p = (u; — 2, uy —
3). To use Theorem 5.10, notice that V(p) = {(2,3)}, so the vari-
ety condition [0,00)vy Nlog|V(p)| = 0 will fail only in the direction
vy = (log2,1og3). The module M is Rpy-Noetherian except when
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vy = (0,—1) or (—1,0). A sample of these arguments is the following:
if v;; = (—1,0), then Ry is the ring Ry = Z[uy, ui'], and so

Ro/p DD Ru/p D 3Ru/p DRu/p D

is an infinite ascending chain of PR -submodules, showing this direction
to be non-Noetherian. The non-expansive set is shown in Figure 15,
using the convention above associating subsets of the Grassmanian to
subsets of the (d — 1)-sphere.

O
|
FI1GURE 15. Non-expansive directions for x2, x3.

Ledrappier’s example will have a similar picture, and these are rep-
resentative of the possible type of phenomena in Z2?-actions. For Z3-
actions, there are many new possible phenomena.

Example 5.13. The following example is taken from Miles’ thesis [52,
Example 4.3.7], which constructs the systems in a different way. If X
is the dual of the ring of integers in Q(v/2 + v/5), with a Z3-action
o induced by the automorphisms dual to multiplication by 1 + v/2,
2+ \/5, and 3 + v/2v/5. Here there are four non-expansive planes in
general position, leaving seven expansive cones shown in Figure 16.

Understanding the next example exhibits several new phenomena
that arise in Z%actions for d > 3. First, there may be no expansive
lines at all. Second, a set of expansive directions may have curved sides.
Finally, the set of non-expansive behaviour may have interior. It is not
possible to draw the corresponding set of non-expansive planes, so the
figure just shows the set of non-expansive vectors on the 2-sphere that
are outward normals to non-expansive half-planes.

Example 5.14. Let d = 3 and p = (1 + uy + ug,u3 — 2). This is a
prime ideal (see [20] for the details of this argument). Since V(p) =
{(z,—2—1,2) : z € C}, log|V(p)| lies in a plane at height log 2 above
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(a)

FI1GURE 16. Non-expansive directions on the sphere and
the corresponding planes.

the origin, and in this plane it has the shape shown in Figure 17(a),
where the boundary curves are parameterized by (logr,log|r £ 1|) for
0 < r < oo. When projected onto Ss, the set in the upper hemisphere
shown in Figure 17(b) results, with three cusps on the equator.

(b)

FIGURE 17. A nonexpansive set with interior.

Using Theorem 5.11, the polynomial uz — 2 € p witnesses that the
open upper hemisphere in S, is disjoint from N"(af%/?). Moreover,
14 u; + us € p shows that no points in the lower hemisphere are in
N"(af?/?) either, with the possible exceptions of those on the three
quarter meridians shown in Figure 17(b). We will show that each of
these quarter meridians is contained in N"(af%/¥), so that they, com-
bined with N¥(a/%/?) in the upper hemisphere, comprise all of N(a//3/¥).

We will treat the meridian from (0, —1,0) to (0,0, —1), the other two
being similar. It is enough to show that unit vectors in the directions
(0, —a, —b) are non-Noetherian, where a and b are positive integers (an
argument in [20] shows that N"(af%/?) is itself closed). Let H € Hs
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be {x € R® : x-(0,a,b) > 0}. The isomorphism ¢ : f +— f(t,—t —
1,2), ¢: R3/p — Z[t,1/2t(t + 1)] sends the subring Ry to Z[t*!, (—t —
1)m2" : am + bn > 0]. Then Rj/p is Noetherian over Ry if and
only if Z[t, 1/2t(t + 1)] is finitely generated over Z[t*!, (—t — 1)™2" :
am + bn > 0]. Using the characterisation from Theorem 5.11 again,
this is equivalent to whether we can write 1 as a combination, using
coefficients in Z[tT!], of expressions of the form (—t — 1)™2", where
am + bn > 0. Suppose this to be the case, so that

(5.2) 1= Y St -1,
(mn)er

where f.,(t) € Z[t*'] and F is a finite set of (m,n) € Z? for which
am +bn > 0. Let |- |, denote the extension of the 2-adic norm on Q
to Q(2'/%). Substitute ¢t = 2%* — 1 in (5.2). Since [2¢/* — 1], = 1, it
follows that | f,,(2%/° — 1), < 1. Hence

1— |1|2 _ Z fmn(za/b o 1)(_2a/b)m on
(m,n)eF 2
< s, L@ = 1, |2
< max 27(@mHn/b <,

(m,n)eF

This contradiction shows that (5.2) is impossible, so that each rational
direction (0, —a, —b) is non-Noetherian.

5.2. Adelic amoebas. In Theorem 5.10 two entirely different kinds
of reasons for non-expansiveness were presented: the module may fail
to be Noetherian along the half-space H, or it may fail the variety
condition. It turns out that this distinction in kind is not really neces-
sary, and a valuation-theoretic approach gives a cleaner picture. This
section is taken from Miles’s thesis [72] and recent work of Einsiedler,
Lind and Ward [21].

Example 5.15. To understand this, start with the very simple Ex-
ample 5.12. There were three points in N, one coming from N as a
result of the point (2,3) in the variety, and two coming from N" cor-
responding to the two non-Noetherian directions. Now consider the
logarithmic image of the same variety over Qy: the point (2,3) € Q2
has (log |2|21og |3|2) = (—log2,0), giving the direction (—1,0). Simi-
larly, the logarithmic image of the variety over Qg gives the direction
(0,—1). Of course it is not really legitimate to select the primes 2
and 3 after we knew the answer: however, for any other prime p, the
logarithmic image of the variety over QQ, comprises the point (0,0),
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which does not project to anything more on the circle. So the union
of the projections of the p-adic amoebas over all p < oo describes the
non-expansive set.

The same thing holds in general, though it is a quite subtle and
lengthy proof. With Theorem 5.10 taking care of the p = oo part,
it amounts to proving a statement purely in commutative algebra.
Namely: the directional Noetherian property is governed by the p-adic
amoebas. A key step is to relate Theorem 5.11, an integrality condition,
to the existence of a valuation that witnesses non-integrality.

Definition 5.16. For a prime ideal p € 9R,, define the usual amoeba
to be

Am(p) = Amo(p) = {(log =], ..., log[z] | z € Ve(p)},

where V¢ denotes the variety over C**. Similarly, for each prime p
denote the p-adic amoeba by

Amy(p) = {(log[21p, - .-, log |zalp [ 2 € Ve, (p)}-
Finally define the adelic amoeba to be Amy (p) = U, Am,(p).

Theorem 5.17. The non-expansive set N(a%d/p) 15 equal to the pro-
jection of Amy(p) onto S41L.

Example 5.18. Consider Example 5.14 again. Here d = 3 and p =
(1+u; +us, u3—2). The usual amoeba of p is that subset of R? defined
by
Amos(p) = {(a,b,l0g2) | (a,b) € Ve((1+ 2z +y))},

which looks like a copy of Figure 17(a) parallel to the (z,y)-plane at
the level z = log 2.

To compute the p-adic amoebas, first let £ be any ultrametric field
with valuation | - | and consider the (z,y) part. Then

(z,y) € Vi((L+z+y)) = |z| = [1 +yl,
S0
logly <0=yl<1l=|z[=1

by the ultrametric inequality. This means the negative y-axis is part of
the amoeba. By symmetry, the negative z-axis is also in the amoeba.
On the other hand,

logly| > 0= ly| > 1= |z| = |y

by the ultrametric inequality again.
Now let p = 2. By the argument above, the 2-adic amoeba is the
shape shown in Figure 18 since it lies at level z = log |2|s = —log 2.
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Z
A

7

FIGURE 18. The 2-adic amoeba of (1 + u; + ug, uz — 2)

For primes p # 2, the amoeba has the same shape in the (z,y)-plane,
but at the level z = log 2|, = 0, as shown in Figure 19. Projecting

z
A

FIGURE 19. The 2-adic amoeba of (1 4+ uy + ug, ug — 2)

these shapes onto the unit sphere gives the shape in Figure 17(b).

The p-adic amoebas also arise in the Biere-Strebel invariant in group
theory — see [1], [3] and [21] for more details.

6. SOME DIRECTIONS FOR FUTURE RESEARCH

6.1. Typical group automorphisms. As we saw in Section 2.8, the
complete picture of how many periodic points a ‘typical” group auto-
morphism has is still unknown.

6.2. Periodic points. How many periodic points can a compact group
endomorphism have? There are some surprising examples here: in [25]
a compact group automorphism 7" is constructed with the property that
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Per, (T') is the denominator of By, (the Bernoulli numbers). Specifi-
cally, if (un)n>1 18 & sequence of positive integers with the properties

Z p(n/d)ug = 0 mod n for all n > 1 (Congruence),
din

Z pu(n/d)ug > 0 for all n > 1 (Positivity), and
din

mln = up,|u, for all n > 1 (Divisibility)

is there a compact group automorphism 7" with u, = Per,(T") for all
n > 17 For more on this, see [55] and [50].

6.3. Mixing problem. Is there a dynamical proof of Theorem 4.77
Even a dynamical proof that Example 4.6 is mixing of all orders seems
difficult.

Is Conjecture 4.9 true? The results known suggest that there are
two obstacles even for the case of principal ideals. First, the Newton
polygon may be loose, opening up the possibility of a non-mixing se-
quence that approximates the wrong shape. Secondly, the polynomial
itself may have non-zero coefficients deep inside its support.

6.4. Entropy. The outstanding problem here is Lehmer’s problem of
course.

6.5. Entropy and Deligne periods. A very interesting problem has
been raised by Deninger in the course of his work on Mahler measures.
In [16] he showed — roughly speaking — that m(f) is the Deligne period
of a certain mixed motive associated in a canonical way to f. Using a p-
adic analogue of Deligne cohomology gives an analogous p-adic valued
Mahler measure, m,, described in [2]. The question raised there is
whether there is a p-adic valued notion of entropy that gives entropy
my(f) to the dynamical system associated to f. A specific form of
this general question is the following. Define log, : C; — C, to be
the branch of the p-adic logarithm with log,(p) = 0, and consider
the map T\ : = — Az on (say) Q,. Is there a meaningful entropy-
like invariant h, (invariant under topological conjugacy, for example)
with h,(T\) = log, A? For more background on the theory behind
this question, see [2, Sect. 1.8]; for background on these questions and
mixed motives, see [15], [18], [17].
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